留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷竞技app官方版下载ios-雷竞技官方平台

倪春华 吴小奇 王萍 王付斌 贾会冲 朱建辉 张毅 姜海健

倪春华, 吴小奇, 王萍, 王付斌, 贾会冲, 朱建辉, 张毅, 姜海健. 雷竞技app官方版下载ios-雷竞技官方平台[J]. 石油实验地质, 2024, 46(2): 366-379. doi: 10.11781/sysydz202402366
引用本文:
倪春华, 吴小奇, 王萍, 王付斌, 贾会冲, 朱建辉, 张毅, 姜海健. 雷竞技app官方版下载ios-雷竞技官方平台[J]. 石油实验地质, 2024, 46(2): 366-379. doi: 10.11781/sysydz202402366
NI Chunhua, WU Xiaoqi, WANG Ping, WANG Fubin, JIA Huichong, ZHU Jianhui, ZHANG Yi, JIANG Haijian. Geochemical characteristics of light hydrocarbons in Upper Paleozoic tight gas from Daniudi Gas Field, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 366-379. doi: 10.11781/sysydz202402366
Citation:
NI Chunhua, WU Xiaoqi, WANG Ping, WANG Fubin, JIA Huichong, ZHU Jianhui, ZHANG Yi, JIANG Haijian. Geochemical characteristics of light hydrocarbons in Upper Paleozoic tight gas from Daniudi Gas Field, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 366-379. doi: 10.11781/sysydz202402366

雷竞技app官方版下载ios-雷竞技官方平台

doi: 10.11781/sysydz202402366
基金项目: 

国家自然科学基金项目 42172149

国家自然科学基金项目 U2244209

中国石化科技部攻关项目 P23230

中国石化科技部攻关项目 P22132

中国石化科技部攻关项目 P21077-1

详细信息
作者简介:

倪春华(1981—),男,博士,高级工程师,本刊编委,从事油气地质与地球化学研究。E-mail: nichunhua.syky@sinopec.com

通讯作者:

吴小奇(1982—),男,博士,高级工程师,本刊青年编委,从事油气成藏地球化学研究。E-mail: xqwu@163.com

  • 中图分类号: TE133.1

  • 文章访问数:  120
  • HTML全文浏览量:  31
  • PDF下载量:  26
  • 被引次数: 0
  • 出版历程
  • 收稿日期:  2023-06-09
  • 修回日期:  2024-01-26
  • 刊出日期:  2024-03-28
  • Geochemical characteristics of light hydrocarbons in Upper Paleozoic tight gas from Daniudi Gas Field, Ordos Basin

  • 雷竞技官方平台: 大牛地气田是鄂尔多斯盆地典型致密砂岩大气田之一。为了更深入了解该区天然气的成因和来源,揭示天然气运移相态,对大牛地气田上古生界致密气开展了轻烃地球化学特征分析。研究表明,该区上古生界致密气C5-7轻烃组成具有异构烷烃优势分布,C6-7轻烃组成中芳烃含量整体偏低(<10%),甚至未检出芳烃,C7轻烃组成具有甲基环己烷优势分布特征,甲基环己烷相对含量均超过50%。上二叠统下石盒子组天然气K1值、K2值均与二叠系山西组和石炭系太原组天然气一致,而δ13C1值则与山西组天然气一致,与太原组天然气有明显不同。与山西组天然气相比,下石盒子组天然气整体具有偏低的苯/正己烷、苯/环己烷和甲苯/正庚烷比值,以及明显偏高的正庚烷/甲基环己烷比值。轻烃地球化学特征及烷烃气碳氢同位素组成综合表明,大牛地气田上古生界天然气为典型煤成气,其中山西组和太原组天然气均为原地自生自储,而下石盒子组天然气为下伏山西组烃源岩生成的天然气经历了游离相垂向运移聚集形成,太原组烃源岩不具有显著贡献。受天然气运移和水溶等作用影响,庚烷值、异庚烷值、苯/正己烷比值等轻烃指标直接用于判识大牛地气田致密气成熟度会存在偏差。

     

    关键词:
  • 轻烃化合物 / 
  • 成熟度 / 
  • 天然气成因 / 
  • 气源对比 / 
  • 运移相态 / 
  • 大牛地气田 / 
  • 鄂尔多斯盆地 
  • HTML全文
  • 图  1  鄂尔多斯盆地大牛地气田位置(a)及地层综合柱状图(b)

    据参考文献[24]修改。

    Figure  1.  Location of Daniudi Gas Field in Ordos Basin (a) and stratigraphic column (b)

    图  2  大牛地气田上古生界天然气轻烃色谱图

    1.2-甲基戊烷;2.3-甲基戊烷;3.正己烷;4.甲基环戊烷;5.苯;6.环己烷;7.2-甲基己烷;8.3-甲基己烷;9.正庚烷;10.甲基环己烷。

    Figure  2.  Chromatogram of light hydrocarbons in natural gas from Upper Paleozoic, Daniudi Gas Field

    图  3  大牛地气田上古生界天然气C5-7正构烷烃、异构烷烃和环烷烃组成

    底图据戴金星等[27]

    Figure  3.  Ternary diagram of n-C5-7, iso-C5-7 and cyc-C5-7 in natural gas from Upper Paleozoic, Daniudi Gas Field

    图  4  大牛地气田上古生界天然气正庚烷、甲基环己烷和二甲基环戊烷相对组成

    底图据戴金星等[27]

    Figure  4.  Ternary diagram of n-heptane, methylcyclohexane and various dimethylcyclopentane in natural gas from Upper Paleozoic, Daniudi Gas Field

    图  5  大牛地气田上古生界天然气δD1δ13C1值相关图

    底图据参考文献[28]。

    Figure  5.  Correlation between δD1 and δ13C1 values of natural gas from Upper Paleozoic, Daniudi Gas Field

    图  6  大牛地气田上古生界天然气庚烷值和异庚烷值相关图

    底图据THOMPSON[18]

    Figure  6.  Correlation between heptane and isoheptane values of natural gas from Upper Paleozoic, Daniudi Gas Field

    图  7  大牛地气田上古生界天然气苯/正己烷(a)、甲苯/正庚烷(b)比值与δ13C1值相关图

    Figure  7.  Correlation between benzene/n-hexane (a), toluene/n-heptane (b) and δ13C1 values of natural gas from Upper Paleozoic, Daniudi Gas Field

    图  8  大牛地气田上古生界天然气(2-MH+2, 3-DMP)/C7与(3-MH+2, 4-DMP)/C7相关图

    Figure  8.  Correlation between (2-MH+2, 3-DMP)/C7 and (3-MH+2, 4-DMP)/C7 of natural gas from Upper Paleozoic, Daniudi Gas Field

    图  9  大牛地气田上古生界天然气(P2+N2)/C7P3/C7相关图

    Figure  9.  Correlation between (P2+N2)/C7 and P3/C7 of natural gas from Upper Paleozoic, Daniudi Gas Field

    图  10  大牛地气田上古生界天然气δ13C1(a)和δ13C2(b)与正庚烷/甲基环己烷相关图

    Figure  10.  Correlation between δ13C1 (a), δ13C2 (b) and n-heptane/methyl-cyclohexane of natural gas from Upper Paleozoic, Daniudi Gas Field

    图  11  大牛地气田下石盒子组(P1x)天然气苯/正己烷(a)和正庚烷/甲基环己烷比值(b)分布

    Figure  11.  Distribution of benzene/n-hexane (a) and n-heptane/methylcyclohexane (b) ratios of Lower Shihezi natural gas from Daniudi Gas Field

    图  12  大牛地气田上古生界天然气苯/正己烷与苯/环己烷(a)、甲苯/正庚烷(b)相关图

    Figure  12.  Correlation between benzene/cyclohexane (a), toluene/n-heptane (b) and benzene/n-hexane of Upper Paleozoic natural gas from Daniudi Gas Field

    表  1  大牛地气田上古生界天然气轻烃相对组成和烷烃气碳氢同位素值

    Table  1.   Relative composition of light hydrocarbons and carbon and hydrogen isotopic values of alkanes in natural gas from Upper Paleozoic, Daniudi Gas Field

    井号
    深度/m
    层位
    C5-7相对组成/%
    C6-7相对组成/%
    C7相对组成/%
    甲基环己烷指数/%
    δ13CV-PDB /‰
    δD1 V-SMOW / ‰
    正构烷烃
    异构烷烃
    环烷烃
    链烷烃
    环烷烃
    芳烃
    二甲基环戊烷
    正庚烷
    甲基环己烷
    CH4
    C2H6
    D1
    P1x
    23.8
    49.8
    26.4
    52.0
    47.2
    0.8
    24.4
    12.9
    62.7
    61.3
    -37.4
    -25.7
    -201
    D2
    2 548
    P1x
    24.2
    50.9
    24.8
    62.0
    36.8
    1.3
    21.0
    22.8
    56.2
    55.2
    -35.8
    -26.1
    -181
    D3
    2 633
    P1x
    22.4
    51.1
    26.5
    52.4
    46.0
    1.6
    25.8
    11.5
    62.8
    61.4
    -37.7
    -25.2
    -197
    D4
    2 675
    P1x
    28.6
    54.1
    17.3
    77.0
    22.5
    0.5
    19.3
    38.3
    42.4
    41.9
    -35.8
    -26.2
    -181
    D5
    2 709
    P1x
    34.8
    44.5
    20.7
    70.5
    28.9
    0.6
    18.9
    39.1
    42.0
    41.4
    -35.5
    -26.5
    -185
    D6
    2 716
    P1x
    23.8
    48.3
    27.9
    58.8
    40.6
    0.6
    36.7
    18.3
    45.0
    44.4
    -37.1
    -25.9
    -197
    D7
    2 749
    P1x
    29.9
    43.9
    26.2
    62.9
    36.3
    0.7
    17.2
    32.0
    50.8
    50.0
    -34.3
    -25.9
    -181
    D8
    2 789
    P1x
    23.6
    54.8
    21.6
    59.8
    39.8
    0.4
    29.2
    14.5
    56.3
    55.2
    -34.7
    -25.4
    -189
    D9
    2 660
    P1x
    31.0
    44.1
    24.9
    65.7
    34.3
    -
    16.0
    32.4
    51.6
    50.9
    -35.7
    -26.0
    -184
    D10
    2 631
    P1x
    22.6
    53.3
    24.1
    54.9
    44.7
    0.4
    28.2
    10.4
    61.4
    60.2
    -37.2
    -24.9
    -198
    D11
    2 667
    P1x
    22.8
    48.5
    28.7
    58.7
    40.3
    1.0
    16.4
    24.0
    59.5
    58.6
    -34.5
    -25.8
    -181
    D12
    2 669
    P1x
    34.5
    43.7
    21.8
    70.1
    29.7
    0.2
    13.7
    38.3
    48.0
    47.3
    -35.4
    -25.7
    -182
    D13
    2 673
    P1x
    19.6
    52.1
    28.2
    55.9
    44.0
    0.1
    20.9
    11.4
    67.7
    66.6
    -34.6
    -25.2
    -183
    D14
    2 698
    P1x
    34.4
    47.5
    18.1
    75.6
    24.4
    -
    25.6
    37.7
    36.7
    36.4
    -35.5
    -26.2
    -188
    D15
    2 703
    P1x
    20.9
    52.4
    26.7
    57.7
    42.3
    -
    20.8
    15.0
    64.3
    63.3
    -34.9
    -25.6
    -180
    D16
    2 700
    P1x
    28.3
    51.2
    20.5
    72.1
    27.9
    -
    14.9
    38.0
    47.0
    46.6
    -35.5
    -25.7
    -182
    D17
    2 635
    P1x
    25.5
    54.8
    19.7
    63.8
    36.2
    -
    29.4
    15.0
    55.6
    54.6
    -36.6
    -26.0
    -197
    D18
    2 716
    P1x
    21.1
    51.3
    27.5
    57.4
    42.6
    -
    20.8
    14.8
    64.4
    63.5
    -35.0
    -25.6
    -181
    D19
    2 675
    P1x
    24.6
    52.1
    23.3
    65.1
    34.9
    -
    16.8
    25.7
    57.5
    56.8
    -35.0
    -26.2
    -180
    D20
    2 685
    P1x
    25.8
    48.7
    25.5
    63.9
    36.1
    -
    17.2
    28.4
    54.4
    53.9
    -35.2
    -25.8
    -181
    D21
    2 680
    P1x
    22.8
    51.5
    25.7
    61.0
    39.0
    -
    17.6
    21.9
    60.5
    59.8
    -35.1
    -26.0
    -179
    D22
    2 630
    P1s
    24.5
    53.7
    21.8
    60.3
    38.8
    0.8
    26.2
    17.1
    56.7
    55.6
    -36.0
    -25.1
    -197
    D23
    2 830
    P1s
    24.1
    52.5
    23.4
    58.5
    39.7
    1.8
    26.5
    17.2
    56.4
    55.3
    -36.0
    -25.3
    -195
    D24
    2 783
    P1s
    21.6
    47.0
    31.4
    44.4
    47.5
    8.1
    20.2
    11.2
    68.6
    67.2
    -35.0
    -24.0
    -196
    D25
    2 831
    P1s
    22.9
    52.0
    25.1
    57.3
    41.4
    1.3
    28.5
    14.7
    56.9
    55.9
    -35.9
    -24.6
    -193
    D26
    2 819
    P1s
    25.1
    51.6
    23.3
    58.1
    41.2
    0.7
    20.5
    17.4
    62.1
    60.7
    -33.3
    -24.8
    -179
    D27
    2 812
    P1s
    23.3
    49.1
    27.6
    53.4
    44.0
    2.6
    22.1
    14.7
    63.1
    61.9
    -34.1
    -24.8
    -186
    D28
    2 846
    P1s
    21.5
    46.2
    32.3
    55.8
    41.6
    2.6
    31.5
    17.1
    51.4
    50.6
    -35.8
    -24.5
    -193
    D29
    2 744
    P1s
    19.7
    49.6
    30.7
    49.0
    49.3
    1.7
    20.4
    9.2
    70.4
    69.1
    -33.8
    -23.9
    -192
    D30
    2 879
    P1s
    22.1
    53.5
    24.4
    56.2
    43.8
    -
    22.0
    11.0
    67.0
    65.9
    -34.5
    -25.1
    -186
    D31
    2 881
    P1s
    32.5
    50.8
    16.7
    62.4
    35.9
    1.7
    35.3
    14.0
    50.7
    50.1
    -37.0
    -25.0
    -209
    D32
    2 826
    P1s
    22.5
    51.8
    25.8
    55.5
    44.5
    -
    21.1
    12.0
    66.8
    65.6
    -34.4
    -25.5
    -187
    D33
    P1s
    28.4
    45.3
    26.3
    49.3
    50.3
    0.5
    20.1
    15.0
    64.8
    63.6
    -36.9
    -25.0
    -201
    D34
    2 820
    P1s
    24.6
    54.5
    20.9
    56.4
    42.9
    0.7
    24.8
    12.9
    62.4
    61.3
    -36.2
    -24.2
    -201
    D35
    2 795
    C3t
    25.8
    49.9
    24.3
    57.0
    39.9
    3.1
    20.3
    17.2
    62.5
    61.4
    -37.5
    -25.5
    -201
    D36
    2 439
    C3t
    27.7
    51.7
    20.6
    61.7
    36.6
    1.7
    22.8
    19.6
    57.6
    56.6
    -37.5
    -26.1
    -204
    D37
    2 417
    C3t
    23.6
    48.2
    28.2
    53.4
    41.9
    4.6
    17.6
    16.5
    65.9
    64.4
    -37.9
    -25.2
    -197
    D38
    2 557
    C3t
    22.5
    48.9
    28.6
    55.0
    42.0
    3.0
    21.8
    17.3
    60.9
    59.8
    -37.7
    -25.0
    -195
    D39
    2 570
    C3t
    21.7
    44.6
    33.8
    47.4
    45.7
    6.9
    19.5
    16.2
    64.3
    62.9
    -37.8
    -24.8
    -197
    D40
    2 795
    C3t
    24.9
    51.6
    23.5
    58.2
    41.1
    0.7
    21.7
    12.6
    65.7
    64.6
    -38.0
    -25.3
    -205
    D41
    2 453
    C3t
    26.2
    54.3
    19.5
    62.7
    36.7
    0.7
    22.6
    11.6
    65.8
    64.7
    -37.8
    -25.1
    -204
    D42
    2 455
    C3t
    25.5
    49.8
    24.7
    56.4
    43.6
    -
    21.6
    12.2
    66.3
    65.2
    -37.7
    -24.9
    -205
    D43
    2 466
    C3t
    24.4
    51.5
    24.1
    55.4
    43.5
    1.1
    19.5
    10.4
    70.2
    68.9
    -37.8
    -25.2
    -204
    D44
    2 462
    C3t
    20.8
    52.6
    26.6
    57.6
    41.7
    0.7
    19.3
    15.2
    65.5
    64.4
    D45
    C3t
    27.4
    54.5
    18.1
    65.2
    34.4
    0.5
    29.0
    13.7
    57.3
    56.5
    -37.2
    -25.4
    -198
    下载: 导出CSV

    表  2  大牛地气田上古生界天然气轻烃地球化学特征参数

    Table  2.   Typical geochemical parameters of light hydrocarbons in natural gas from Upper Paleozoic, Daniudi Gas Field

    井号
    层位
    庚烷值/%
    异庚烷值
    2, 4-二甲基戊烷/2, 3-二甲基戊烷
    气源岩最大埋深温度/℃
    苯/正己烷
    苯/环己烷
    正庚烷/甲基环己烷
    甲苯/正庚烷
    K1
    P2/C7/%
    N2/C7/%
    P3/C7/%
    K2
    D1
    P1x
    8.18
    1.18
    0.777
    136.2
    0.076
    0.099
    0.205
    0.005
    1.09
    13.76
    8.83
    7.61
    0.34
    D2
    P1x
    12.50
    2.44
    0.771
    136.1
    0.101
    0.140
    0.406
    0.012
    1.09
    21.26
    6.66
    10.91
    0.39
    D3
    P1x
    7.18
    1.19
    0.844
    137.5
    0.115
    0.138
    0.183
    0.136
    1.04
    13.83
    8.82
    8.54
    0.38
    D4
    P1x
    18.53
    4.48
    0.966
    139.5
    0.028
    0.093
    0.905
    -
    1.09
    28.30
    5.27
    15.11
    0.45
    D5
    P1x
    22.67
    2.73
    1.068
    141.0
    0.025
    0.080
    0.932
    0.012
    1.09
    23.02
    6.11
    9.09
    0.31
    D6
    P1x
    9.28
    1.58
    0.849
    137.5
    0.048
    0.071
    0.406
    -
    1.15
    20.89
    10.06
    10.58
    0.34
    D7
    P1x
    19.23
    2.55
    0.815
    136.9
    0.050
    0.098
    0.630
    0.002
    1.09
    20.39
    6.20
    9.04
    0.34
    D8
    P1x
    8.73
    1.33
    0.976
    139.6
    0.029
    0.052
    0.258
    0.007
    1.06
    16.54
    9.33
    9.06
    0.35
    D9
    P1x
    19.07
    2.86
    0.777
    136.2
    -
    -
    0.629
    -
    1.07
    20.84
    5.38
    9.53
    0.36
    D10
    P1x
    6.31
    1.14
    0.799
    136.6
    0.039
    0.050
    0.169
    -
    1.06
    13.70
    9.19
    8.95
    0.39
    D11
    P1x
    13.49
    2.90
    0.666
    133.9
    0.096
    0.101
    0.403
    -
    1.10
    20.05
    5.84
    10.74
    0.41
    D12
    P1x
    24.31
    2.74
    0.629
    133.0
    0.007
    0.024
    0.799
    0.003
    1.06
    18.49
    4.91
    10.35
    0.44
    D13
    P1x
    6.24
    2.19
    0.732
    135.3
    -
    -
    0.168
    0.031
    1.05
    18.27
    6.96
    10.81
    0.43
    D14
    P1x
    17.59
    3.23
    1.074
    141.1
    -
    -
    1.026
    -
    1.08
    26.82
    6.38
    13.29
    0.40
    D15
    P1x
    8.10
    2.10
    0.660
    133.8
    -
    -
    0.233
    -
    1.06
    17.55
    6.72
    11.36
    0.47
    D16
    P1x
    19.67
    4.81
    0.741
    135.5
    -
    -
    0.809
    -
    1.06
    26.25
    4.52
    13.81
    0.45
    D17
    P1x
    8.79
    1.37
    0.923
    138.8
    -
    -
    0.271
    -
    1.02
    16.12
    8.81
    10.06
    0.40
    D18
    P1x
    8.13
    2.20
    0.767
    136.0
    -
    -
    0.230
    -
    1.09
    18.47
    6.82
    11.06
    0.44
    D19
    P1x
    13.99
    3.45
    0.766
    136.0
    -
    -
    0.447
    -
    1.06
    22.33
    5.68
    11.79
    0.42
    D20
    P1x
    16.13
    2.84
    0.674
    134.1
    -
    -
    0.522
    -
    1.10
    21.10
    5.56
    11.23
    0.42
    D21
    P1x
    12.05
    2.79
    0.686
    134.3
    -
    -
    0.361
    -
    1.06
    19.24
    5.73
    12.22
    0.49
    D22
    P1s
    10.24
    1.49
    0.896
    138.4
    0.050
    0.090
    0.301
    0.053
    1.08
    17.12
    8.41
    9.21
    0.36
    D23
    P1s
    10.10
    1.45
    0.839
    137.4
    0.150
    0.227
    0.304
    0.011
    1.07
    16.32
    8.46
    9.49
    0.38
    D24
    P1s
    6.69
    1.46
    0.588
    132.0
    0.711
    0.507
    0.163
    0.651
    1.13
    13.31
    7.14
    7.70
    0.38
    D25
    P1s
    8.49
    1.31
    0.928
    138.9
    0.114
    0.162
    0.258
    0.004
    1.00
    14.80
    8.64
    12.79
    0.55
    D26
    P1s
    10.61
    1.84
    0.837
    137.3
    0.054
    0.092
    0.280
    0.006
    1.09
    16.03
    6.24
    8.09
    0.36
    D27
    P1s
    8.73
    1.64
    0.785
    136.4
    0.238
    0.263
    0.233
    0.008
    1.09
    16.21
    7.75
    8.91
    0.37
    D28
    P1s
    9.23
    1.54
    0.898
    138.4
    0.164
    0.220
    0.333
    0.139
    1.10
    18.88
    9.24
    10.14
    0.36
    D29
    P1s
    5.52
    1.50
    0.748
    135.6
    0.210
    0.148
    0.131
    -
    1.02
    13.60
    7.28
    10.09
    0.48
    D30
    P1s
    6.35
    1.79
    0.673
    134.1
    -
    -
    0.165
    -
    1.05
    16.01
    7.35
    10.11
    0.43
    D31
    P1s
    6.24
    1.41
    0.876
    138.0
    0.096
    0.172
    0.276
    -
    1.10
    14.29
    8.33
    9.09
    0.40
    D32
    P1s
    6.96
    1.75
    0.677
    134.2
    -
    -
    0.180
    -
    1.10
    15.85
    7.23
    9.85
    0.43
    D33
    P1s
    9.75
    1.22
    0.537
    130.7
    0.036
    0.044
    0.232
    -
    1.14
    12.87
    7.87
    5.16
    0.25
    D34
    P1s
    7.79
    1.32
    0.840
    137.4
    0.058
    0.080
    0.206
    -
    1.08
    14.43
    8.62
    7.90
    0.34
    D35
    C3t
    9.79
    2.01
    0.745
    135.6
    0.252
    0.330
    0.275
    -
    1.10
    17.87
    7.09
    9.55
    0.38
    D36
    C3t
    10.62
    1.99
    0.805
    136.7
    0.123
    0.187
    0.341
    0.004
    1.08
    18.69
    7.00
    10.67
    0.42
    D37
    C3t
    9.74
    2.22
    0.700
    134.6
    0.432
    0.481
    0.250
    0.015
    1.07
    17.71
    6.52
    9.19
    0.38
    D38
    C3t
    10.12
    2.28
    1.308
    144.0
    0.305
    0.324
    0.285
    0.008
    1.07
    22.50
    7.50
    7.50
    0.25
    D39
    C3t
    9.31
    1.99
    0.644
    133.4
    0.762
    0.587
    0.252
    0.007
    1.10
    17.79
    6.90
    8.89
    0.36
    D40
    C3t
    6.98
    1.95
    0.788
    136.4
    0.055
    0.067
    0.192
    0.016
    1.05
    17.59
    7.07
    9.62
    0.39
    D41
    C3t
    6.32
    1.90
    0.781
    136.3
    0.047
    0.069
    0.176
    0.027
    1.09
    16.75
    7.26
    10.22
    0.43
    D42
    C3t
    6.87
    1.79
    0.799
    136.6
    -
    -
    0.184
    0.007
    1.04
    16.68
    7.41
    8.79
    0.36
    D43
    C3t
    6.01
    1.93
    0.774
    136.2
    0.094
    0.106
    0.148
    0.014
    1.07
    16.25
    6.76
    8.79
    0.38
    D44
    C3t
    8.74
    2.35
    0.625
    133.0
    0.076
    0.079
    0.232
    -
    1.11
    18.69
    7.06
    11.10
    0.43
    D45
    C3t
    7.12
    1.60
    0.742
    135.5
    0.035
    0.059
    0.239
    -
    1.10
    16.10
    7.66
    12.42
    0.52
    注:气源岩最大埋深温度[T=140+15ln(2, 4-二甲基戊烷/2, 3-二甲基戊烷)][17]K1=(2-甲基己烷+2, 3-二甲基戊烷)/(3-甲基己烷+2, 4-二甲基戊烷)[25]P2N2P3分别为2-甲基己烷+3-甲基己烷、1, 1-二甲基环戊烷+1, 顺, 3-二甲基环戊烷+1, 反, 3-二甲基环戊烷、各类二甲基戊烷+3-乙基戊烷[26]K2=P3/(P2+N2),即:(各类二甲基戊烷+3-乙基戊烷)/(2-甲基己烷+3-甲基己烷+1, 1-二甲基环戊烷+1, 顺, 3-二甲基环戊烷+1, 反, 3-二甲基环戊烷)[26]
    下载: 导出CSV
  • 参考文献(44)
  • [1]
    DAI Jinxing, LI Jian, LUO Xia, et al. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China[J]. Organic Geochemistry, 2005, 36(12): 1617-1635. doi: 10.1016/j.orggeochem.2005.08.017
    [2]
    HU Guoyi, LI Jian, SHAN Xiuqin, et al. The origin of natural gas and the hydrocarbon charging history of the Yulin Gas Field in the Ordos Basin, China[J]. International Journal of Coal Geology, 2010, 81(4): 381-391. doi: 10.1016/j.coal.2009.07.016
    [3]
    LIU Quanyou, JIN Zhijun, MENG Qingqiang, et al. Genetic types of natural gas and filling patterns in Daniudi Gas Field, Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2015, 107: 1-11. doi: 10.1016/j.jseaes.2015.04.001
    [4]
    WU Xiaoqi, LIU Quanyou, ZHU Jianhui, et al. Geochemical characteristics of tight gas and gas-source correlation in the Daniudi Gas Field, the Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 79: 412-425. doi: 10.1016/j.marpetgeo.2016.10.022
    [5]
    倪春华, 朱建辉, 刘光祥, 等. 鄂尔多斯盆地杭锦旗地区上古生界煤系烃源岩生烃潜力再评价[J]. 石油实验地质, 2021, 43(5): 826-834. doi: 10.11781/sysydz202105826

    NI Chunhua, ZHU Jianhui, LIU Guangxiang, et al. Re-evaluation of hydrocarbon generation potential of the Upper Paleozoic coal-measure source rocks in the Hangjinqi area of Ordos Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 826-834. doi: 10.11781/sysydz202105826
    [6]
    何发岐, 王付斌, 王杰, 等. 鄂尔多斯盆地东胜气田氦气分布规律及特大型富氦气田的发现[J]. 石油实验地质, 2022, 44(1): 1-10. doi: 10.11781/sysydz202201001

    HE Faqi, WANG Fubin, WANG Jie, et al. Helium distribution of Dongsheng Gas Field in Ordos Basin and discovery of a super large helium-rich gas field[J]. Petroleum Geology & Experiment, 2022, 44(1): 1-10. doi: 10.11781/sysydz202201001
    [7]
    赵永强, 倪春华, 吴小奇, 等. 鄂尔多斯盆地杭锦旗地区二叠系地层水地球化学特征和来源[J]. 石油实验地质, 2022, 44(2): 279-287. doi: 10.11781/sysydz202202279

    ZHAO Yongqiang, NI Chunhua, WU Xiaoqi, et al. Geochemical characteristics and source of Permian formation water in Hangjinqi area, Ordos Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 279-287. doi: 10.11781/sysydz202202279
    [8]
    郝蜀民, 陈召佑, 李良. 鄂尔多斯大牛地气田致密砂岩气成藏理论与勘探实践[M]. 北京: 石油工业出版社, 2011.

    HAO Shumin, CHEN Zhaoyou, LI Liang. The accumulation theory and practice of tight sandstone gas in Daniudi Gas Field, Ordos Basin[M]. Beijing: Petroleum Industry Press, 2011.
    [9]
    雷涛, 王桥, 任广磊, 等. 鄂尔多斯盆地山西组致密砂岩成分特征及其对储层的制约: 以大牛地气田A区为例[J]. 天然气地球科学, 2023, 34(3): 418-430. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202303004.htm

    LEI Tao, WANG Qiao, REN Guanglei, et al. Component characteristics of Shanxi Formation tight sandstone and their implications for the reservoirs in Ordos Basin: taking the A block of Daniudi Gas Field as an example[J]. Natural Gas Geoscience, 2023, 34(3): 418-430. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202303004.htm
    [10]
    孙晓, 王杰, 陶成, 等. 鄂尔多斯盆地大牛地下古生界天然气地球化学特征及其来源综合判识[J]. 石油实验地质, 2021, 43(2): 307-314. doi: 10.11781/sysydz202102307

    SUN Xiao, WANG Jie, TAO Cheng, et al. Evaluation of geochemical characteristics and source of natural gas in Lower Paleozoic, Daniudi area, Ordos Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 307-314. doi: 10.11781/sysydz202102307
    [11]
    彭先锋, 邓虎成, 何建华, 等. 鄂尔多斯盆地大牛地气田中奥陶统马家沟组裂缝特征及成因[J]. 石油实验地质, 2022, 44(1): 41-50. doi: 10.11781/sysydz202201041

    PENG Xianfeng, DENG Hucheng, HE Jianhua, et al. Characte-ristics and genesis of fractures in Middle Ordovician Majiagou Formation, Daniudi Gas Field, Ordos Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 41-50. doi: 10.11781/sysydz202201041
    [12]
    胥旺, 邓虎成, 雷涛, 等. 鄂尔多斯盆地东北部大牛地气田马家沟组不同性质断裂对表生岩溶的控制作用[J]. 天然气地球科学, 2023, 34(3): 431-444. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202303005.htm

    XU Wang, DENG Hucheng, LEI Tao, et al. Control of different faults on supergene karst in the Majiagou Formation of Daniudi Gas Field, northeastern Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(3): 431-444. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202303005.htm
    [13]
    YANG Zhi, HE Sheng, GUO Xiaowen, et al. Formation of low permeability reservoirs and gas accumulation process in the Daniudi Gas Field, northeast Ordos Basin, China[J]. Marine and Petroleum Geology, 2016, 70: 222-236. doi: 10.1016/j.marpetgeo.2015.10.021
    [14]
    郝蜀民, 惠宽洋, 李良. 鄂尔多斯盆地大牛地大型低渗气田成藏特征及其勘探开发技术[J]. 石油与天然气地质, 2006, 27(6): 762-768. doi: 10.3321/j.issn:0253-9985.2006.06.006

    HAO Shumin, HUI Kuanyang, LI Liang. Reservoiring features of Daniudi low-permeability gas field in Ordos Basin and its exploration and development technologies[J]. Oil & Gas Geology, 2006, 27(6): 762-768. doi: 10.3321/j.issn:0253-9985.2006.06.006
    [15]
    程克明, 熊英, 马立元, 等. 华北地台早二叠世太原组和山西组煤沉积模式与生烃关系研究[J]. 石油勘探与开发, 2005, 32(4): 142-146. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504027.htm

    CHENG Keming, XIONG Ying, MA Liyuan, et al. Relationship between coal depositional modes and hydrocarbon generation of the Early Permian Taiyuan and Shanxi formation in Huabei Platform[J]. Petroleum Exploration and Development, 2005, 32(4): 142-146. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504027.htm
    [16]
    袁东山, 李国强, 莫贵初, 等. 鄂尔多斯盆地大牛地气田上古生界烃源岩评价[J]. 长江大学学报(自然科学版)理工, 2012, 9(11): 84-87.

    YUAN Dongshan, LI Guoqiang, MO Guichu, et al. Evaluation of the Upper Paleozoic source rocks in the Daniudi Gas Field, Ordos Basin[J]. Journal of Yangtze University (Natural Science Edition) Science & Engineering, 2012, 9(11): 84-87.
    [17]
    MANGO F D. The light hydrocarbons in petroleum: a critical review[J]. Organic Geochemistry, 1997, 26(7/8): 417-440.
    [18]
    THOMPSON K F M. Classification and thermal history of petroleum based on light hydrocarbons[J]. Geochimica et Cosmochimica Acta, 1983, 47(2): 303-316.
    [19]
    段毅, 赵阳, 姚泾利, 等. 轻烃地球化学研究进展及发展趋势[J]. 天然气地球科学, 2014, 25(12): 1875-1888. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201412002.htm

    DUAN Yi, ZHAO Yang, YAO Jingli, et al. Research advance and tendency of light hydrocarbon geochemistry[J]. Natural Gas Geoscience, 2014, 25(12): 1875-1888. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201412002.htm
    [20]
    胡国艺, 李剑, 谢增业, 等. 天然气轻烃地球化学[M]. 北京: 石油工业出版社, 2018: 1-293.

    HU Guoyi, LI Jian, XIE Zengye, et al. Geochemistry of light hydrocarbons in natural gas[M]. Beijing Petroleum Industry Press, 2018: 1-293.
    [21]
    胡国艺, 李谨, 李志生, 等. 煤成气轻烃组分和碳同位素分布特征与天然气勘探[J]. 石油学报, 2010, 31(1): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201001009.htm

    HU Guoyi, LI Jin, LI Zhisheng, et al. Composition and carbon isotopic distribution characteristics of light hydrocarbon in coal-derived gas and natural gas exploration[J]. Acta Petrolei Sinica, 2010, 31(1): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201001009.htm
    [22]
    胡国艺, 汪为胜, 廖凤蓉. 煤成气轻烃地球化学特征及其影响因素: 以四川盆地须家河组为例[J]. 岩石学报, 2012, 28(3): 905-916. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203020.htm

    HU Guoyi, WANG Weisheng, LIAO Fengrong. Geochemical characteristics and its influencing factors of light hydrocarbon in coal-derived gas: a case study of Sichuan Basin[J]. Acta Petrologica Sinica, 2012, 28(3): 905-916. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203020.htm
    [23]
    WU Xiaoqi, ZHU Jianhui, NI Chunhua, et al. Genetic types and sources of Lower Paleozoic natural gas in the Daniudi Gas Field, Ordos Basin, China[J]. Energy Exploration & Exploitation, 2017, 35(2): 218-236.
    [24]
    LIU Quanyou, WU Xiaoqi, JIA Huichong, et al. Geochemical characteristics of helium in natural gas from the Daniudi Gas Field, Ordos Basin, Central China[J]. Frontiers in Earth Science, 2022, 10: 823308.
    [25]
    MANGO F D. An invariance in the isoheptanes of petroleum[J]. Science, 1987, 273(4814): 514-517.
    [26]
    MANGO F D. The origin of light hydrocarbons in petroleum: a kinetic test of the steady-state catalytic hypothesis[J]. Geochi-mica et Cosmochimica Acta, 1990, 54(5): 1315-1323.
    [27]
    戴金星, 裴锡古, 戚厚发. 中国天然气地质学: 卷一[M]. 北京: 石油工业出版社, 1992.

    DAI Jinxing, PEI Xigu, QI Houfa. Natural gas geology in China: vol. 1[M]. Beijing: Petroleum Industry Press, 1992.
    [28]
    WANG Xiaofeng, LIU Wenhui, SHI Baoguang, et al. Hydrogen isotope characteristics of thermogenic methane in Chinese sedimentary basins[J]. Organic Geochemistry, 2015, 83-84: 178-189.
    [29]
    THOMPSON K F M. Light hydrocarbons in subsurface sediments[J]. Geochimica et Cosmochimica Acta, 1979, 43(5): 657-672.
    [30]
    BEMENT W O, Levey R A, Mango F D. The temperature of oil generation as defined with C7 chemistry maturity parameter (2, 4-DMP/2, 3-DMP ratio)[M]//GRIMALT J O, DORRONSORO C. Organic geochemistry: developments and applications to energy, climate, environment and human history. Donostia-San Sebastián, Spain: European Association of Organic Geochemists, 1995: 505-507.
    [31]
    CHEN Xiaohui, ZHANG Min, HUANG Guanghui, et al. Geochemical characteristics of light hydrocarbons in cracking gases from chloroform bitumen A, crude oil and its fractions[J]. Science in China (Series D: Earth Sciences), 2009, 52(S1): 26-33.
    [32]
    叶素娟, 朱宏权, 李嵘, 等. 天然气运移有机-无机地球化学示踪指标: 以四川盆地川西坳陷侏罗系气藏为例[J]. 石油勘探与开发, 2017, 44(4): 549-560. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704010.htm

    YE Sujuan, ZHU Hongquan, LI Rong, et al. Tracing natural gas migration by integrating organic and inorganic geochemical data: a case study of the Jurassic gas fields in western Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(4): 549-560. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704010.htm
    [33]
    唐宇, 吕正祥, 叶素娟, 等. 成都凹陷上侏罗统蓬莱镇组天然气运移特征与富集主控因素[J]. 石油与天然气地质, 2013, 34(3): 281-287. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201303004.htm

    TANG Yu, LÜ Zhengxiang, YE Sujuan, et al. Characteristics and controlling factors of natural gas migration and accumulation in the Upper Jurassic Penglaizhen Formation of Chengdu Sag[J]. Oil & Gas Geology, 2013, 34(3): 281-287. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201303004.htm
    [34]
    LEYTHAEUSER D, SCHAEFER R G, CORNFORD C, et al. Generation and migration of light hydrocarbons (C2-C7) in sedimentary basins[J]. Organic Geochemistry, 1979, 1(4): 191-204.
    [35]
    HU Guoyi, LI Jian, LI Jin, et al. Preliminary study on the origin identification of natural gas by the parameters of light hydrocarbon[J]. Science in China (Series D: Earth Sciences), 2008, 51(S1): 131-139.
    [36]
    胡惕麟, 戈葆雄, 张义纲, 等. 源岩吸附烃和天然气轻烃指纹参数的开发和应用[J]. 石油实验地质, 1990, 12(4): 375-394. doi: 10.11781/sysydz199004375

    HU Tiling, GE Baoxiong, ZHANG Yigang, et al. The development and application of fingerprint parameters for hydrocarbons absorbed by source rocks and light hydrocarbons in natural gas[J]. Petroleum Geology & Experiment, 1990, 12(4): 375-394. doi: 10.11781/sysydz199004375
    [37]
    王培荣, 徐冠军, 张大江, 等. 常用轻烃参数正、异庚烷值应用中的问题[J]. 石油勘探与开发, 2010, 37(1): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201001021.htm

    WANG Peirong, XU Guanjuan, ZHANG Dajiang, et al. Problems with application of heptane and isoheptane values as light hydrocarbon parameters[J]. Petroleum Exploration and Development, 2010, 37(1): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201001021.htm
    [38]
    HUANG Shipeng, LI Jianzhong, WANG Tongshan, et al. Application of light hydrocarbons in natural gas geochemistry of gas fields in China[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 13-53.
    [39]
    PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide[M]. 2nd ed. Cambridge: Cambridge University Press, 2005.
    [40]
    王顺玉, 明巧, 贺祖义, 等. 四川盆地天然气C4-C7烃类指纹变化特征研究[J]. 天然气工业, 2006, 26(11): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200611004.htm

    WANG Shunyu, MING Qiao, HE Zuyi, et al. Study on fingerprint character of C4-C7 hydrocarbons in natural gas of the Sichuan Basin[J]. Natural Gas Industry, 2006, 26(11): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200611004.htm
    [41]
    ZHANG Chunming, LI Sitian, ZHAO Hongjing, et al. Applications of Mango's light hydrocarbon parameters to petroleum from Tarim Basin, NW China[J]. Applied Geochemistry, 2005, 20(3): 545-551.
    [42]
    陈建平, 王绪龙, 陈践发, 等. 甲烷碳同位素判识天然气及其源岩成熟度新公式[J]. 中国科学(地球科学), 2021, 51(4): 560-581. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202104005.htm

    CHEN Jianping, WANG Xulong, CHEN Jianfa, et al. New equation to decipher the relationship between carbon isotopic composition of methane and maturity of gas source rocks[J]. Science China (Earth Sciences), 2021, 64(3): 470-493. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202104005.htm
    [43]
    孙秀丽, 万永刚, 刘照伟, 等. 挥发作用对C5-C8轻烃指标的影响: 模拟实验证据[J]. 石油学报, 2013, 34(6): 1060-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306004.htm

    SUN Xiuli, WAN Yonggang, LIU Zhaowei, et al. Effects of natural evaporation on C5-C8 light hydrocarbon indicators: evidence from experimental results in the laboratory[J]. Acta Petrolei Sinica, 2013, 34(6): 1060-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306004.htm
    [44]
    覃伟, 李仲东, 郑振恒, 等. 鄂尔多斯盆地大牛地气田地层水特征及成因分析[J]. 岩性油气藏, 2011, 23(5): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201105026.htm

    QIN Wei, LI Zhongdong, ZHENG Zhenheng, et al. Characteristics and genesis of formation water in Daniudi Gas Field, Ordos Basin[J]. Lithologic Reservoirs, 2011, 23(5): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201105026.htm
  • 相关文章
  • 施引文献
  • 资源附件(0)
  • 加载中
  • WeChat 点击查看大图
    图(12) / 表(2)
    计量
  • 文章访问数:  120
  • HTML全文浏览量:  31
  • PDF下载量:  26
  • 被引次数: 0
  • 出版历程
  • 收稿日期:  2023-06-09
  • 修回日期:  2024-01-26
  • 刊出日期:  2024-03-28
  • 目录

    /

    返回文章
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

    返回